论文标题

OARF基准套件:对联合学习系统的表征和影响

The OARF Benchmark Suite: Characterization and Implications for Federated Learning Systems

论文作者

Hu, Sixu, Li, Yuan, Liu, Xu, Li, Qinbin, Wu, Zhaomin, He, Bingsheng

论文摘要

本文介绍并描述了一个开放的应用程序存储库,用于联合学习(OARF),这是一个用于联合机器学习系统的基准套件。以前可用于联合学习的基准测试主要集中在合成数据集上,并使用有限的应用程序。 OARF模仿更现实的应用程序方案,其中公开可用的数据集是图像,文本和结构化数据中的不同数据孤岛。我们的表征表明,基准套件在数据大小,分布,特征分布和学习任务复杂性方面具有多样性。通过参考实现的广泛评估显示了联合学习系统重要方面的未来研究机会。我们已经开发了参考实现,并评估了联合学习的重要方面,包括模型准确性,沟通成本,吞吐量和收敛时间。通过这些评估,我们发现了一些有趣的发现,例如联邦学习可以有效地增加端到端的吞吐量。

This paper presents and characterizes an Open Application Repository for Federated Learning (OARF), a benchmark suite for federated machine learning systems. Previously available benchmarks for federated learning have focused mainly on synthetic datasets and use a limited number of applications. OARF mimics more realistic application scenarios with publicly available data sets as different data silos in image, text and structured data. Our characterization shows that the benchmark suite is diverse in data size, distribution, feature distribution and learning task complexity. The extensive evaluations with reference implementations show the future research opportunities for important aspects of federated learning systems. We have developed reference implementations, and evaluated the important aspects of federated learning, including model accuracy, communication cost, throughput and convergence time. Through these evaluations, we discovered some interesting findings such as federated learning can effectively increase end-to-end throughput.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源