论文标题

采矿学生对推断学生满意度预测指标的回应

Mining Student Responses to Infer Student Satisfaction Predictors

论文作者

Afrin, Farzana, Rahaman, Mohammad Saiedur, Hamilton, Margaret

论文摘要

学生满意度的识别和分析是一个具有挑战性的问题。这变得越来越重要,因为将学生满意度的衡量标准表明了课程的教学程度。但是,由于学生满意度具有各个方面,这仍然是一个具有挑战性的问题。在本文中,我们将学生满意度估计为预测问题,在该问题中,我们预测了学生满意度的不同水平,并推断了与课程和讲师相关的有影响力的预测因素。我们介绍了学生满意度的五个不同方面,即1)课程内容,2)班级参与,3)实现对课程的初步期望,4)与专业发展的相关性,以及5)如果课程将它们联系起来并帮助探索现实世界中的情况。我们采用最先进的机器学习技术来预测学生满意度的这些方面。在我们的实验中,我们使用了一个大型学生评估数据集,其中包括使用与课程和讲师有关的不同属性的学生感知。我们的实验结果和全面的分析表明,与讲师相关的属性相比,学生满意度受课程属性的影响更大。

The identification and analysis of student satisfaction is a challenging issue. This is becoming increasingly important since a measure of student satisfaction is taken as an indication of how well a course has been taught. However, it remains a challenging problem as student satisfaction has various aspects. In this paper, we formulate the student satisfaction estimation as a prediction problem where we predict different levels of student satisfaction and infer the influential predictors related to course and instructor. We present five different aspects of student satisfaction in terms of 1) course content, 2) class participation, 3) achievement of initial expectations about the course, 4) relevancy towards professional development, and 5) if the course connects them and helps to explore the real-world situations. We employ state-of-the-art machine learning techniques to predict each of these aspects of student satisfaction levels. For our experiment, we utilize a large student evaluation dataset which includes student perception using different attributes related to courses and the instructors. Our experimental results and comprehensive analysis reveal that student satisfaction is more influenced by course attributes in comparison to instructor related attributes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源