论文标题

PI螺旋子代理上的平坦度

Flatness over PI coideal subalgebras

论文作者

Skryabin, Serge

论文摘要

在假设残留有限的尺寸HOPF代数H具有Artinian的分数环,因此证明H在满足多项式身份的任何权利的坐骨下骨上是一个平坦的模块,并且在任何多项式身份均具有忠实的扁平化模块。结果,我们发现了一大批HOPF代数,这些代数在所有坐骨亚代词上都呈平坦,并且在所有HOPF子代理上都忠实地平坦。

Under the assumption that a residually finite dimensional Hopf algebra H has an Artinian ring of fractions it is proved that H is a flat module over any right coideal subalgebra satisfying a polynomial identity and is faithfully flat over any polynomial identity Hopf subalgebra. As a consequence we find a large class of Hopf algebras which are flat over all coideal subalgebras and are faithfully flat over all Hopf subalgebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源