论文标题

重点:用于神经信号分类的资源效率倾斜树

ResOT: Resource-Efficient Oblique Trees for Neural Signal Classification

论文作者

Zhu, Bingzhao, Farivar, Masoud, Shoaran, Mahsa

论文摘要

可以在芯片上以最小计算和内存资源在芯片上实现的分类器对于在医疗和物联网设备等新兴应用程序中的边缘计算至关重要。本文介绍了基于斜决策树的机器学习模型,以实现对神经植入物的资源有效分类。通过将模型压缩与概率路由和实施成本吸引力学习相结合,我们提出的模型可以显着降低与最新模型相比的内存和硬件成本,同时保持分类精度。我们在三个神经分类任务上培训了利用效率的斜树(Resot-PE),以评估性能,内存和硬件要求。在癫痫发作的检测任务上,使用10名癫痫患者的颅内脑电图,我们能够将模型尺寸降低3.4倍,并且与增强树的集合相比,特征提取成本与增强树的合奏相比,提取成本降低了14.6倍。在第二次实验中,我们使用了12例植入深脑刺激(DBS)装置的患者的局部现场电位,测试了帕金森氏病的震颤检测模型。我们获得了可比的分类性能,作为最先进的树木集合,同时分别将模型尺寸和特征提取成本降低了10.6倍和6.8倍。我们还使用来自9名受试者的ECOG记录进行了6级手指运动检测任务测试,将模型大小降低了17.6倍,并将特征计算成本降低了5.1倍。所提出的模型可以实现分类器的低功率和记忆有效实现,以实时神经系统疾病检测和运动解码。

Classifiers that can be implemented on chip with minimal computational and memory resources are essential for edge computing in emerging applications such as medical and IoT devices. This paper introduces a machine learning model based on oblique decision trees to enable resource-efficient classification on a neural implant. By integrating model compression with probabilistic routing and implementing cost-aware learning, our proposed model could significantly reduce the memory and hardware cost compared to state-of-the-art models, while maintaining the classification accuracy. We trained the resource-efficient oblique tree with power-efficient regularization (ResOT-PE) on three neural classification tasks to evaluate the performance, memory, and hardware requirements. On seizure detection task, we were able to reduce the model size by 3.4X and the feature extraction cost by 14.6X compared to the ensemble of boosted trees, using the intracranial EEG from 10 epilepsy patients. In a second experiment, we tested the ResOT-PE model on tremor detection for Parkinson's disease, using the local field potentials from 12 patients implanted with a deep-brain stimulation (DBS) device. We achieved a comparable classification performance as the state-of-the-art boosted tree ensemble, while reducing the model size and feature extraction cost by 10.6X and 6.8X, respectively. We also tested on a 6-class finger movement detection task using ECoG recordings from 9 subjects, reducing the model size by 17.6X and feature computation cost by 5.1X. The proposed model can enable a low-power and memory-efficient implementation of classifiers for real-time neurological disease detection and motor decoding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源