论文标题
对抗性表示综合替代私人属性的学习
Adversarial representation learning for synthetic replacement of private attributes
论文作者
论文摘要
数据隐私是许多现实世界数据源的越来越重要的方面,这些数据源包含敏感信息可能具有巨大的潜力,可以使用正确的隐私增强转换来解锁,但是当前方法通常无法产生令人信服的输出。此外,在隐私和效用之间找到适当的平衡通常是一个棘手的权衡。在这项工作中,我们提出了一种新的数据私有化方法,其中涉及两个步骤:在第一步中,它消除了敏感信息,在第二步中,它用独立的随机样本替代了此信息。我们的方法建立在对抗表示学习的基础上,该学习通过训练模型欺骗越来越强大的对手来确保强大的隐私。尽管以前的方法仅旨在混淆敏感信息,但我们发现,添加新的随机信息可以增强提供的隐私,并在任何给定的隐私级别提供更好的效用。结果是一种可以在图像数据上提供更强大的私有化的方法,却保留了输入的域和效用,完全独立于下游任务。
Data privacy is an increasingly important aspect of many real-world Data sources that contain sensitive information may have immense potential which could be unlocked using the right privacy enhancing transformations, but current methods often fail to produce convincing output. Furthermore, finding the right balance between privacy and utility is often a tricky trade-off. In this work, we propose a novel approach for data privatization, which involves two steps: in the first step, it removes the sensitive information, and in the second step, it replaces this information with an independent random sample. Our method builds on adversarial representation learning which ensures strong privacy by training the model to fool an increasingly strong adversary. While previous methods only aim at obfuscating the sensitive information, we find that adding new random information in its place strengthens the provided privacy and provides better utility at any given level of privacy. The result is an approach that can provide stronger privatization on image data, and yet be preserving both the domain and the utility of the inputs, entirely independent of the downstream task.