论文标题

适当动作的均等atiyah-patodi-singer索引定理ii:$ k $ - 理论指数

An equivariant Atiyah-Patodi-Singer index theorem for proper actions II: the $K$-theoretic index

论文作者

Hochs, Peter, Wang, Bai-Ling, Wang, Hang

论文摘要

考虑一个在Riemannian歧管$ M $带边界的本地紧凑型组$ g $的适当的等轴测操作,因此$ m/g $是紧凑的。然后,在合适的边界条件下,$ m $上的dirac型运算符$ d $具有均值索引$ \ permatatorName {index} _g(d)$ $ k $ - 还原$ c^*$ c^*$ - algebra $ c^*algebra $ c^*rg $ g $的$ k $。这是Baum-Connes分析组装图和(均等)Atiyah-Patodi-Singer指数的常见概括。在本系列的第一部分中,根据$ d $的参数和与$ g $相关的跟踪,为元素$ g \ in g $ in G $中的元素$ g \定义了数值索引$ \ operatotorName {index} _g(d)$。为此指数获得了Atiyah-Patodi-Singer类型指数公式。在本文中,我们表明,在某些条件下,对于trace $τ_g$,$τ_g(\ operatorName {index} _g(d))= \ propatatorName {index} _g(d)$,对于trace $τ_g$定义了由Orbital积分定义的$ G $。这意味着第一部分中的索引定理得出有关$ K $ - 理论索引$ \ operatatorName {index} _g(d)$的信息。它还表明$ \ operatatorName {index} _g(d)$是同型不变的数量。

Consider a proper, isometric action by a unimodular locally compact group $G$ on a Riemannian manifold $M$ with boundary, such that $M/G$ is compact. Then an equivariant Dirac-type operator $D$ on $M$ under a suitable boundary condition has an equivariant index $\operatorname{index}_G(D)$ in the $K$-theory of the reduced group $C^*$-algebra $C^*_rG$ of $G$. This is a common generalisation of the Baum-Connes analytic assembly map and the (equivariant) Atiyah-Patodi-Singer index. In part I of this series, a numerical index $\operatorname{index}_g(D)$ was defined for an element $g \in G$, in terms of a parametrix of $D$ and a trace associated to $g$. An Atiyah-Patodi-Singer type index formula was obtained for this index. In this paper, we show that, under certain conditions, $τ_g(\operatorname{index}_G(D)) = \operatorname{index}_g(D)$, for a trace $τ_g$ defined by the orbital integral over the conjugacy class of $g$. This implies that the index theorem from part I yields information about the $K$-theoretic index $\operatorname{index}_G(D)$. It also shows that $\operatorname{index}_g(D)$ is a homotopy-invariant quantity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源