论文标题

关于椭圆形复合物的Navier-Stokes类型方程的稳定性现象

On the stability phenomenon of the Navier-Stokes type Equations for Elliptic Complexes

论文作者

Parfenov, Andrei, Shlapunov, Alexander

论文摘要

令$ {\ Mathcal X} $为Riemannian $ n $ dimensional Smooth Compact封闭歧管,$ n \ geq 2 $,$ e^i $是$ \ MATHCAL X $和$ \ {a^i,e^i,e^i \} $的平滑矢量捆绑包,是linial linial linial linear fielater Perner perferter offer ofer tord corpersertors。我们考虑由$ \ {a^i,e^i,e^i \} $相关的操作员方程式在各向异性Hölder空间的规模上,上层$ {\ Mathcal x} \ times [0,t],带有有限的时间$ t> 0 $。使用差速器的属性$ a^i $和抛物线运算符在此规模的空间中,我们将方程式减少到表单$(i+k)u = f $的非线性fredholm运算符方程,其中$ k $是紧凑的连续运算符。看来,在考虑因素下的每个Banach空间的每个点上,Fréchet衍生品$(i+k)'$在空间中的每个点都不断逆转,地图$(i+k)$在空间中是开放的。

Let ${\mathcal X}$ be a Riemannian $n$-dimensional smooth compact closed manifold, $n\geq 2$, $E^i$ be smooth vector bundles over $\mathcal X$ and $\{A^i,E^i\}$ be an elliptic differential complex of linear first order operators. We consider the operator equations, induced by the Navier-Stokes type equations associated with $\{A^i,E^i\}$ on the scale of anisotropic Hölder spaces over the layer ${\mathcal X} \times [0,T]$ with finite time $T > 0$. Using the properties of the differentials $A^i$ and parabolic operators over this scale of spaces, we reduce the equations to a nonlinear Fredholm operator equation of the form $(I+K) u = f$, where $K$ is a compact continuous operator. It appears that the Fréchet derivative $(I+K)'$ is continuously invertible at every point of each Banach space under the consideration and the map $(I+K)$ is open and injective in the space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源