论文标题

探测神经对话模型以进行对话理解

Probing Neural Dialog Models for Conversational Understanding

论文作者

Saleh, Abdelrhman, Deutsch, Tovly, Casper, Stephen, Belinkov, Yonatan, Shieber, Stuart

论文摘要

开放域对话框的主要方法依赖于聊天数据集中神经模型的端到端培训。但是,这种方法几乎没有关于这些模型所学的知识(或不学习)的见解。在这项研究中,我们分析了通过神经开放域对话系统学到的内部表示形式,并评估这些表示的质量以学习基本的对话技能。我们的结果表明,标准的开放域对话框系统努力回答问题,推断矛盾和确定对话主题以及其他任务。我们还发现,这些模型并未完全利用对话的二元,转弯性质。通过探索这些局限性,我们强调需要对架构和培训方法进行更多研究,以更好地捕获有关对话的高级信息。

The predominant approach to open-domain dialog generation relies on end-to-end training of neural models on chat datasets. However, this approach provides little insight as to what these models learn (or do not learn) about engaging in dialog. In this study, we analyze the internal representations learned by neural open-domain dialog systems and evaluate the quality of these representations for learning basic conversational skills. Our results suggest that standard open-domain dialog systems struggle with answering questions, inferring contradiction, and determining the topic of conversation, among other tasks. We also find that the dyadic, turn-taking nature of dialog is not fully leveraged by these models. By exploring these limitations, we highlight the need for additional research into architectures and training methods that can better capture high-level information about dialog.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源