论文标题

riemannian表面的对称和等法

Symmetry and Isoperimetry for Riemannian Surfaces

论文作者

Hoisington, Joseph Ansel, McGrath, Peter

论文摘要

对于域的$ω$,在地球上凸面中,我们引入了散射能量$ \ MATHCAL {E}(ω)$,该$通过量化其与等距圆动作的不兼容来测量$ω$的不对称性。我们证明了涉及$ \ Mathcal {e}(ω)$的几个尖锐的定量等级不等式,并通过散射能量通过凸和旋转对称性来表征域而来的域。我们还为Riemannian表面尖锐的Sobolev不等式提供了新的证明,该表面独立于等等不平等。

For a domain $Ω$ in a geodesically convex surface, we introduce a scattering energy $\mathcal{E}(Ω)$, which measures the asymmetry of $Ω$ by quantifying its incompatibility with an isometric circle action. We prove several sharp quantitative isoperimetric inequalities involving $\mathcal{E}(Ω)$ and characterize the domains with vanishing scattering energy by their convexity and rotational symmetry. We also give a new proof of the sharp Sobolev inequality for Riemannian surfaces which is independent of the isoperimetric inequality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源