论文标题

机器学习来预测阿尔茨海默氏病风险:早期诊断的准确和实用解决方案

Application of Machine Learning to Predict the Risk of Alzheimer's Disease: An Accurate and Practical Solution for Early Diagnostics

论文作者

Cochrane, Courtney, Castineira, David, Shiban, Nisreen, Protopapas, Pavlos

论文摘要

阿尔茨海默氏病(AD)破坏了超过500万美国人的认知能力,并对医疗保健系统造成了巨大的压力。本文提出了一个机器学习预测模型,用于无需医学成像,并且临床访问和测试较少,以期诊断较早,更便宜。早期的诊断对于任何药物或医疗治疗这种疾病的有效性至关重要。我们的模型使用人口统计学,生物标志物和认知测试数据进行了训练和验证:阿尔茨海默氏病神经影像学计划(ADNI)和澳大利亚成像,生物标志物的衰老生活方式旗舰研究(AIBL)。我们系统地探索不同的机器学习模型,预处理方法和特征选择技术。性能最多的模型在预测AD中表现出了超过90%的精度和回忆,并且结果跨越了ADNI的子研究以及独立的AIBL研究。我们还证明,这些结果可以减少每次访问的临床访问或测试的数量。使用元分类算法和纵向数据分析,我们能够使用3个测试和4次临床访问来生成“精益”的诊断方案,这些方案可以预测阿尔茨海默氏症的发育,其准确性为87%,召回了79%。这项新颖的工作可以改编成实用的早期诊断工具,以预测阿尔茨海默氏症的发展,该工具可以最大程度地提高准确性,同时最大程度地减少必要的诊断测试和临床访问的数量。

Alzheimer's Disease (AD) ravages the cognitive ability of more than 5 million Americans and creates an enormous strain on the health care system. This paper proposes a machine learning predictive model for AD development without medical imaging and with fewer clinical visits and tests, in hopes of earlier and cheaper diagnoses. That earlier diagnoses could be critical in the effectiveness of any drug or medical treatment to cure this disease. Our model is trained and validated using demographic, biomarker and cognitive test data from two prominent research studies: Alzheimer's Disease Neuroimaging Initiative (ADNI) and Australian Imaging, Biomarker Lifestyle Flagship Study of Aging (AIBL). We systematically explore different machine learning models, pre-processing methods and feature selection techniques. The most performant model demonstrates greater than 90% accuracy and recall in predicting AD, and the results generalize across sub-studies of ADNI and to the independent AIBL study. We also demonstrate that these results are robust to reducing the number of clinical visits or tests per visit. Using a metaclassification algorithm and longitudinal data analysis we are able to produce a "lean" diagnostic protocol with only 3 tests and 4 clinical visits that can predict Alzheimer's development with 87% accuracy and 79% recall. This novel work can be adapted into a practical early diagnostic tool for predicting the development of Alzheimer's that maximizes accuracy while minimizing the number of necessary diagnostic tests and clinical visits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源