论文标题

一种基于GPM的算法,用于在某些概率度量的空间中解决正则化的Wasserstein Barycenter问题

A GPM-based algorithm for solving regularized Wasserstein barycenter problems in some spaces of probability measures

论文作者

Kum, S., Duong, M. H., Lim, Y., Yun, S.

论文摘要

在本文中,我们专注于对正规化的瓦斯坦barycenter问题的分析。我们为两种重要类别的概率措施提供了唯一性和barycenter的特征:(i)高斯分布和(ii)$ q $ - 高斯分布;每个由特定的熵功能正规。我们提出了一种基于矩阵空间中梯度投影方法的算法,以计算这些正则化的重中心。我们还考虑了一般类别的$φ$ - 指数度量,仅研究非注册的重中心。最后,我们从数值上显示了参数的影响和算法的稳定性,在数据的小扰动下。

In this paper, we focus on the analysis of the regularized Wasserstein barycenter problem. We provide uniqueness and a characterization of the barycenter for two important classes of probability measures: (i) Gaussian distributions and (ii) $q$-Gaussian distributions; each regularized by a particular entropy functional. We propose an algorithm based on gradient projection method in the space of matrices in order to compute these regularized barycenters. We also consider a general class of $φ$-exponential measures, for which only the non-regularized barycenter is studied. Finally, we numerically show the influence of parameters and stability of the algorithm under small perturbation of data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源