论文标题

完整定向神经网络的平衡传播

Equilibrium Propagation for Complete Directed Neural Networks

论文作者

Farinha, Matilde Tristany, Pequito, Sérgio, Santos, Pedro A., Figueiredo, Mário A. T.

论文摘要

人工神经网络是最成功的监督学习方法之一,最初是受生物学对应物的启发。然而,对于人工神经网络而言,最成功的学习算法,反向传播在生物学上被认为是难以置信的。我们通过建立和扩展平衡传播学习框架来为生物学上合理的神经元学习做出贡献。具体来说,我们介绍了:任意网络体系结构的一种新的神经元动力和学习规则;一种能够修剪无关连接的稀疏性诱导方法;使用Lyapunov理论,模型的动力系统表征。

Artificial neural networks, one of the most successful approaches to supervised learning, were originally inspired by their biological counterparts. However, the most successful learning algorithm for artificial neural networks, backpropagation, is considered biologically implausible. We contribute to the topic of biologically plausible neuronal learning by building upon and extending the equilibrium propagation learning framework. Specifically, we introduce: a new neuronal dynamics and learning rule for arbitrary network architectures; a sparsity-inducing method able to prune irrelevant connections; a dynamical-systems characterization of the models, using Lyapunov theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源