论文标题

具有可扩展的混合贝叶斯推断的深度自动编码主题模型

Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference

论文作者

Zhang, Hao, Chen, Bo, Cong, Yulai, Guo, Dandan, Liu, Hongwei, Zhou, Mingyuan

论文摘要

为了构建一个灵活且可解释的模型进行文档分析,我们开发了深层自动编码主题模型(DATM),该模型(DATM)使用伽马发行版的层次结构来构建其多模型层生成网络。为了为生成网络的参数提供可扩展的后验推断,我们开发了主题 - 适应性的随机梯度Riemannian MCMC,该梯度Riemannian MCMC共同学习了所有层和主题的简单受限的全局参数,并具有主题和层面特定的学习率。给定全局参数的后验样本,为了有效地在所有随机层上有效地推断出Datm下文档的局部潜在表示,我们提出了一个Weibull向上向上的变异编码器,该变量编码器通过深层神经网络确定性地向上传播信息,然后是基于Weibull分布的基于基于Weibull的基于基于Weibull分布的随机代理下生的生物模型。为了共同建模文档及其相关标签,我们进一步提出了监督的DATM,以增强其潜在表示的歧视能力。我们的模型的功效和可扩展性在大型语料库的无监督和监督的学习任务上得到了证明。

To build a flexible and interpretable model for document analysis, we develop deep autoencoding topic model (DATM) that uses a hierarchy of gamma distributions to construct its multi-stochastic-layer generative network. In order to provide scalable posterior inference for the parameters of the generative network, we develop topic-layer-adaptive stochastic gradient Riemannian MCMC that jointly learns simplex-constrained global parameters across all layers and topics, with topic and layer specific learning rates. Given a posterior sample of the global parameters, in order to efficiently infer the local latent representations of a document under DATM across all stochastic layers, we propose a Weibull upward-downward variational encoder that deterministically propagates information upward via a deep neural network, followed by a Weibull distribution based stochastic downward generative model. To jointly model documents and their associated labels, we further propose supervised DATM that enhances the discriminative power of its latent representations. The efficacy and scalability of our models are demonstrated on both unsupervised and supervised learning tasks on big corpora.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源