论文标题
强大的联邦学习:仿射分配的情况发生了变化
Robust Federated Learning: The Case of Affine Distribution Shifts
论文作者
论文摘要
Federated Learning是一个分布式范式,旨在使用网络中的多个用户分发的样本进行培训模型,同时将样品保留在用户设备上,以旨在效率和保护用户隐私。在这种情况下,培训数据通常在统计上是异质性的,并且在用户之间表现出各种分配变化,从而降低了学习模型的性能。本文的主要目的是开发一种强大的联合学习算法,该算法可在用户样本中的分配变化中实现令人满意的性能。为了实现这一目标,我们首先考虑用户数据中的结构化仿射分布变化,该数据捕获了联合设置中的设备依赖性数据异质性。这种扰动模型适用于各种联合学习问题,例如图像分类,其中图像经历了与设备相关的缺陷,例如不同的强度,对比度和亮度。为了解决跨用户的仿射分布变化,我们提出了一个联合学习框架对仿射分布转移(FLRA)的强大范围,该框架对现象瓦斯坦斯坦的转移非常强大,转向观察到的样品的分布。为了解决FLRA的分布式最小问题,我们提出了一种快速有效的优化方法,并通过梯度下降(GDA)方法提供收敛保证。我们进一步证明了学习分类器的概括误差界限,以显示从样本的经验分布到真正的基础分布的适当概括。我们执行几个数值实验,以经验支持FLRA。我们表明,与标准的联邦学习和对抗性培训方法相比,我们提出的算法确实可以显着降低新测试用户中学到的分类器的性能的显着增长,这确实足以降低学习分类器的性能。
Federated learning is a distributed paradigm that aims at training models using samples distributed across multiple users in a network while keeping the samples on users' devices with the aim of efficiency and protecting users privacy. In such settings, the training data is often statistically heterogeneous and manifests various distribution shifts across users, which degrades the performance of the learnt model. The primary goal of this paper is to develop a robust federated learning algorithm that achieves satisfactory performance against distribution shifts in users' samples. To achieve this goal, we first consider a structured affine distribution shift in users' data that captures the device-dependent data heterogeneity in federated settings. This perturbation model is applicable to various federated learning problems such as image classification where the images undergo device-dependent imperfections, e.g. different intensity, contrast, and brightness. To address affine distribution shifts across users, we propose a Federated Learning framework Robust to Affine distribution shifts (FLRA) that is provably robust against affine Wasserstein shifts to the distribution of observed samples. To solve the FLRA's distributed minimax problem, we propose a fast and efficient optimization method and provide convergence guarantees via a gradient Descent Ascent (GDA) method. We further prove generalization error bounds for the learnt classifier to show proper generalization from empirical distribution of samples to the true underlying distribution. We perform several numerical experiments to empirically support FLRA. We show that an affine distribution shift indeed suffices to significantly decrease the performance of the learnt classifier in a new test user, and our proposed algorithm achieves a significant gain in comparison to standard federated learning and adversarial training methods.