论文标题
供应链管理中的产品层次结构预测的多相方法:对Monarchfx Inc的申请
A Multi-Phase Approach for Product Hierarchy Forecasting in Supply Chain Management: Application to MonarchFx Inc
论文作者
论文摘要
层次时间序列的需求存在于许多行业中,并且通常与产品,时间范围或地理聚合有关。传统上,这些层次结构已被自上而下,自下而上或中间方法预测。我们要回答的问题是如何利用儿童级预测来改善层次供应链中的父级预测。改进的预测可用于大大降低物流成本,尤其是在电子商务中。我们提出了一种新型的多相分层(MPH)方法。我们的方法涉及使用机器学习模型独立地在层次结构中预测每个系列,然后将所有预测组合在一起以允许在父级进行第二阶段模型估计。 Monarchfx Inc.(物流解决方案提供商)的销售数据用于评估我们的方法并将其与自下而上和自上而下的方法进行比较。我们的结果表明,使用拟议的方法,预测准确性提高了82-90%。使用提出的方法,供应链规划师可以得出更准确的预测模型,以利用多元数据的好处。
Hierarchical time series demands exist in many industries and are often associated with the product, time frame, or geographic aggregations. Traditionally, these hierarchies have been forecasted using top-down, bottom-up, or middle-out approaches. The question we aim to answer is how to utilize child-level forecasts to improve parent-level forecasts in a hierarchical supply chain. Improved forecasts can be used to considerably reduce logistics costs, especially in e-commerce. We propose a novel multi-phase hierarchical (MPH) approach. Our method involves forecasting each series in the hierarchy independently using machine learning models, then combining all forecasts to allow a second phase model estimation at the parent level. Sales data from MonarchFx Inc. (a logistics solutions provider) is used to evaluate our approach and compare it to bottom-up and top-down methods. Our results demonstrate an 82-90% improvement in forecast accuracy using the proposed approach. Using the proposed method, supply chain planners can derive more accurate forecasting models to exploit the benefit of multivariate data.