论文标题

非凸稀疏正则化的三操作算法分裂算法

A three-operator splitting algorithm for nonconvex sparsity regularization

论文作者

Bian, Fengmiao, Zhang, Xiaoqun

论文摘要

稀疏正则化已在许多领域中已大量应用,例如信号,图像处理和机器学习。在本文中,我们主要考虑涉及三个术语的非凸最小化问题,例如:稀疏信号恢复和低等级矩阵恢复。我们采用戴维斯和Yin(称为dys)提出的三个操作员分裂,以解决所得的非凸问题,并为在非凸案例中为此三操作剂分裂算法开发收敛理论。我们表明,如果选择步长小于可计算阈值,则整个序列会收敛到固定点。通过定义与DYS方法相关的新降低能量函数,我们在额外的假设下建立了整个序列和局部收敛速率的全局收敛性,即此能量函数是Kurdyka- $ $ ojasiewicz函数。我们还为生成序列的界限提供了足够的条件。最后,进行了一些数值实验,以将DYS算法与某些经典的有效算法进行比较,以稀疏信号恢复和低级矩阵完成。数值结果表明,DYS方法的表现优于这些特定应用程序的Exting方法。

Sparsity regularization has been largely applied in many fields, such as signal and image processing and machine learning. In this paper, we mainly consider nonconvex minimization problems involving three terms, for the applications such as: sparse signal recovery and low rank matrix recovery. We employ a three-operator splitting proposed by Davis and Yin (called DYS) to solve the resulting possibly nonconvex problems and develop the convergence theory for this three-operator splitting algorithm in the nonconvex case. We show that if the step size is chosen less than a computable threshold, then the whole sequence converges to a stationary point. By defining a new decreasing energy function associated with the DYS method, we establish the global convergence of the whole sequence and a local convergence rate under an additional assumption that this energy function is a Kurdyka-$Ł$ojasiewicz function. We also provide sufficient conditions for the boundedness of the generated sequence. Finally, some numerical experiments are conducted to compare the DYS algorithm with some classical efficient algorithms for sparse signal recovery and low rank matrix completion. The numerical results indicate that DYS method outperforms the exsiting methods for these specific applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源