论文标题

多根堆栈和应用的镜像定理

A mirror theorem for multi-root stacks and applications

论文作者

Tseng, Hsian-Hua, You, Fenglong

论文摘要

给定一个平滑的投射品种$ x $,带有简单的正常交叉除数$ d:= d_1+d_2+...+d_n $,其中$ d_i \ subset x $是光滑的,不可约的和nef的。我们通过构造$ i $ function,这是gromov for gromov的$ i $ function,证明了多根堆叠$ x_ {d,\ vec r} $的镜像定理。我们提供三个应用程序:(1)我们表明,对于足够大的$ \ vec r $,$ x_ {d,\ vec r}的某些零属不变性稳定。 (2)我们陈述了一个广义的本地遗传学原理猜想,并证明了它的版本。 (3)我们表明,使用$ x_ {d,\ vec r} $的Orbifold不变式的Fano品种的正则量子量与镜像Landau的经典时期相吻合。

Given a smooth projective variety $X$ with a simple normal crossing divisor $D:=D_1+D_2+...+D_n$, where $D_i\subset X$ are smooth, irreducible and nef. We prove a mirror theorem for multi-root stacks $X_{D,\vec r}$ by constructing an $I$-function, a slice of Givental's Lagrangian cone for Gromov--Witten theory of multi-root stacks. We provide three applications: (1) We show that some genus zero invariants of $X_{D,\vec r}$ stabilize for sufficiently large $\vec r$. (2) We state a generalized local-log-orbifold principle conjecture and prove a version of it. (3) We show that regularized quantum periods of Fano varieties coincide with classical periods of the mirror Landau--Ginzburg potentials using orbifold invariants of $X_{D,\vec r}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源