论文标题

迭代总和和希尔伯特功能

Iterated sumsets and Hilbert functions

论文作者

Eliahou, Shalom, Mazumdar, Eshita

论文摘要

令A为Abelian组(G, +)的有限子集。令H $ \ ge $ 2为整数。如果| a | $ \ ge $ 2和基数| ha | h折的迭代集合ha = a + $ \ times $ $ \ times $ $ $ \ times $ + a是已知的,一个人可以说|(h-1)a |和|(H + 1)A |?众所周知,|(h -1)a | $ \ ge $ | ha | (h--1)/h,是pl {ü} nnecke不平等的结果。在这里,我们通过一种新方法来改善这种界限。也就是说,我们对序列| ha |建模H $ \ ge $ 0具有标准分级代数的Hilbert功能。然后,我们将Macaulay的1927定理应用于Hilbert功能的增长,更具体地说是它最近的Condemens版本。我们的界限暗示|(h -1)a | $ \ ge $ $θ$(x,h)| ha | (h--1)/h对于某个因素$θ$(x,h)> 1,其中x是一个与| ha |紧密链接的实际数字。此外,我们表明$θ$(x,h)渐近地倾向于$ \ $ \ $ 2.718 as | a |与|

Let A be a finite subset of an abelian group (G, +). Let h $\ge$ 2 be an integer. If |A| $\ge$ 2 and the cardinality |hA| of the h-fold iterated sumset hA = A + $\times$ $\times$ $\times$ + A is known, what can one say about |(h -- 1)A| and |(h + 1)A|? It is known that |(h -- 1)A| $\ge$ |hA| (h--1)/h , a consequence of Pl{ü}nnecke's inequality. Here we improve this bound with a new approach. Namely, we model the sequence |hA| h$\ge$0 with the Hilbert function of a standard graded algebra. We then apply Macaulay's 1927 theorem on the growth of Hilbert functions, and more specifically a recent condensed version of it. Our bound implies |(h -- 1)A| $\ge$ $θ$(x, h) |hA| (h--1)/h for some factor $θ$(x, h) > 1, where x is a real number closely linked to |hA|. Moreover, we show that $θ$(x, h) asymptotically tends to e $\approx$ 2.718 as |A| grows and h lies in a suitable range varying with |A|.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源