论文标题
流量的声学预测:将液体喷射流变化到自由表面
Acoustic prediction of flowrate: varying liquid jet stream onto a free surface
论文作者
论文摘要
在许多现实世界应用中,有关液体喷射流流有关的信息至关重要。在大量情况下,这些流程直接落在自由表面(例如池)上,形成带有随附的飞溅声的飞溅。产生的声音是由液体喷射流和无源自由表面之间的能量相互作用提供的。在这项研究中,我们收集了掉入水池中的不同流量水射流的声音,并使用此声音预测所涉及的流量和流动轨迹。采用了两种方法:一种使用从收集的声音中提取的音频功能训练的机器学习模型来预测流量(以及随后的流量轨迹)。相反,第二种方法直接使用与液态液相互作用的光谱能有关的声参数来估计流动轨迹。但是,实际的流量是使用重量法直接确定的:跟踪池液体随时间的变化。我们在这里表明,这两种方法与实际流量率很好,并在准确预测流量轨迹方面提供了可比的性能,因此,使用声音为潜在的现实生活应用提供了见解。
Information on liquid jet stream flow is crucial in many real world applications. In a large number of cases, these flows fall directly onto free surfaces (e.g. pools), creating a splash with accompanying splashing sounds. The sound produced is supplied by energy interactions between the liquid jet stream and the passive free surface. In this investigation, we collect the sound of a water jet of varying flowrate falling into a pool of water, and use this sound to predict the flowrate and flowrate trajectory involved. Two approaches are employed: one uses machine-learning models trained using audio features extracted from the collected sound to predict the flowrate (and subsequently the flowrate trajectory). In contrast, the second method directly uses acoustic parameters related to the spectral energy of the liquid-liquid interaction to estimate the flowrate trajectory. The actual flowrate, however, is determined directly using a gravimetric method: tracking the change in mass of the pooling liquid over time. We show here that the two methods agree well with the actual flowrate and offer comparable performance in accurately predicting the flowrate trajectory, and accordingly offer insights for potential real-life applications using sound.