论文标题

单位不变矩阵模型的光谱反​​卷积

Spectral deconvolution of unitarily invariant matrix models

论文作者

Tarrago, Pierre

论文摘要

本文在假设噪声的分布是单位不变的,实现了一种复杂的分析方法,以通过添加或随机矩阵噪声的添加或乘法恢复矩阵的频谱。 Arizmendi,Tarrago和Vargas在Arxiv中引入的方法:1711.08871,分为两个步骤:第一步是通过固定点方法组成的,以计算某个域中所需分布的stieltjes变换,第二步是第二步,第二步是由cauchy分布依赖于噪声的cauchy分布的经典反向扭转的频率。我们还为第一步的平方误差提供明确的界限。

The present paper implements a complex analytic method to recover the spectrum of a matrix perturbed by either the addition or the multiplication of a random matrix noise, under the assumption that the distribution of the noise is unitarily invariant. This method, introduced by Arizmendi, Tarrago and Vargas in arXiv:1711.08871, is done in two steps : the first step consists in a fixed point method to compute the Stieltjes transform of the desired distribution in a certain domain, and the second step is a classical deconvolution by a Cauchy distribution, whose parameter depends on the intensity of the noise. We also provide explicit bounds for the mean squared error of the first step.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源