论文标题
在旋转高斯河网黑色孔中自发标量的发作
Onset of spontaneous scalarization in spinning Gauss-Bonnet black holes
论文作者
论文摘要
从数字上证明,在爱因斯坦 - 量表理论中旋转黑洞的特征是,标量场与弯曲时空的高斯 - 骨网不变的非最低负面耦合可能会形成成倍增长的不稳定性。有趣的是,已经证明,这种速度不稳定标志着Einstein-Gauss-Bonnet-Scalar理论中自发性标量现象的开始,表征了旋转黑洞的旋转黑洞,其尺寸无尺寸无角度动量参数$ {\ bar a} \ equiv a} \ equiv a/m equiv a/m equiv bar bar bar bar bar bar bar bar bar bar。 a} _ {\ text {crit}} \ simeq0.505 $。在本文中,我们使用{\ it分析}技术证明,在爱因斯坦 - 高斯 - 鲍内特式理论中标记秃头kerr黑洞和毛茸茸的黑洞(标量)旋转黑洞之间的边界的临界旋转参数是由确切的尺寸无尺寸的无限关系$ { 2} $。
It has recently been proved numerically that spinning black holes in Einstein-scalar theories which are characterized by a non-minimal negative coupling of the scalar field to the Gauss-Bonnet invariant of the curved spacetime may develop exponentially growing instabilities. Intriguingly, it has been demonstrated that this tachyonic instability, which marks the onset of the spontaneous scalarization phenomenon in the Einstein-Gauss-Bonnet-scalar theory, characterizes spinning black holes whose dimensionless angular momentum parameter ${\bar a}\equiv a/M$ is larger than some critical value ${\bar a}_{\text{crit}}\simeq0.505$. In the present paper we prove, using {\it analytical} techniques, that the critical rotation parameter which marks the boundary between bald Kerr black holes and hairy (scalarized) spinning black holes in the Einstein-Gauss-Bonnet-scalar theory is given by the exact dimensionless relation ${\bar a}_{\text{crit}}={1\over 2}$.