论文标题
代数在更高类别中的煤层富集
The coalgebraic enrichment of algebras in higher categories
论文作者
论文摘要
我们证明,给定的$ \ nathcal {c} $当前对称的单体$ \ infty $ -scategory和任何本质上的小$ \ infty $ -operad $ \ mathcal {o} $,$ \ inftty $ \ infty $ -scaltory的$ \ \ natcal {o} $} $} $ - algebebbras ins in n is n is in ance ancy ins in n ance ancy in cancal is in ance in cancal ins in ance in cancal和在$ \ Mathcal {c} $中,对当前的对称单体$ \ indoidal $ \ infty $ - 类别 - calgebras。我们提供了普遍测量山结构的更高分类类似物。对于通常意义上的类别,Hyland,LópezFranco和Vasilakopoulou证明了结果。
We prove that given $\mathcal{C}$ a presentably symmetric monoidal $\infty$-category, and any essentially small $\infty$-operad $\mathcal{O}$, the $\infty$-category of $\mathcal{O}$-algebras in $\mathcal{C}$ is enriched, tensored and cotensored over the presentably symmetric monoidal $\infty$-category of $\mathcal{O}$-coalgebras in $\mathcal{C}$. We provide a higher categorical analogue of the universal measuring coalgebra. For categories in the usual sense, the result was proved by Hyland, López Franco, and Vasilakopoulou.