论文标题
使用冗余数表示的数字稳定性推断迭代方法
Digit Stability Inference for Iterative Methods Using Redundant Number Representation
论文作者
论文摘要
在我们最近在硬件中迭代计算的工作中,我们表明,当后者的精度要么不足以解决问题的解决方案,任意过度求解器的表现比传统的算术等效物更有利。这些性能的显着改善源于推断迭代之间相同最重要的数字存在的能力。该技术使用以冗余表示数字运行的算法的属性,以使这些数字的产生可以跳过,从而提高效率。但是,无法保证数字会稳定,即在将来的任何迭代中永远不会改变。在本文中,我们使用间隔和正向误差分析来解决这一缺点,以证明使用固定迭代方法计算线性方程系统的近似值时,具有高意义的数字将变得稳定。我们使用此信息更快地将矩阵调理与最重要的数字稳定性的增长率之间的关系形式化。与我们以前的工作相比,这种新技术的典范硬件实现实现了使用Jacobi方法的一组各种条件的系统,可实现2.2倍的速度。
In our recent work on iterative computation in hardware, we showed that arbitrary-precision solvers can perform more favorably than their traditional arithmetic equivalents when the latter's precisions are either under- or over-budgeted for the solution of the problem at hand. Significant proportions of these performance improvements stem from the ability to infer the existence of identical most-significant digits between iterations. This technique uses properties of algorithms operating on redundantly represented numbers to allow the generation of those digits to be skipped, increasing efficiency. It is unable, however, to guarantee that digits will stabilize, i.e., never change in any future iteration. In this article, we address this shortcoming, using interval and forward error analyses to prove that digits of high significance will become stable when computing the approximants of systems of linear equations using stationary iterative methods. We formalize the relationship between matrix conditioning and the rate of growth in most-significant digit stability, using this information to converge to our desired results more quickly. Versus our previous work, an exemplary hardware realization of this new technique achieves an up-to 2.2x speedup in the solution of a set of variously conditioned systems using the Jacobi method.