论文标题
全息耗散宇宙学中由于绝热粒子的产生而产生的熵产生
Entropy production due to adiabatic particle creation in a holographic dissipative cosmology
论文作者
论文摘要
宇宙学绝热粒子的产生导致不可逆转的熵产生。该熵的演变在较晚的弗里德曼(Robertson) - 罗伯逊(Robertson)的宇宙中进行了检查,使用具有幂律术语的耗散模型(与哈勃参数$ h $的功率成正比)。在耗散的宇宙中,与Bekenstein-Bekenstein-hawkking熵在宇宙的地平线上不同,哈勃体积中包含的不可逆熵与$ h^{ - 1} $成正比。此外,还检查了地平线熵的演变,从而扩展了对非脉络性宇宙的先前分析[Phys。\ Rev. \ d \ textbf {100},123545(2019)(2019年)(Arxiv:1911.08306)]。在本模型中,始终满足热力学的广义第二定律,而在特定条件下,熵的最大化是满足的。耗散宇宙应受到熵最大化的限制,就像宇宙的行为一样,是普通的,孤立的宏观系统。热力学约束可能与从减速宇宙过渡到加速宇宙的过渡的约束一致。
Cosmological adiabatic particle creation results in the generation of irreversible entropy. The evolution of this entropy is examined in a flat Friedmann--Robertson--Walker universe at late times, using a dissipative model with a power-law term (proportional to the power of the Hubble parameter $H$). In a dissipative universe, the irreversible entropy included in the Hubble volume is found to be proportional to $H^{-1}$, unlike for the case of the Bekenstein--Hawking entropy on the horizon of the universe. In addition, the evolution of the horizon entropy is examined, extending the previous analysis of a non-dissipative universe [Phys.\ Rev.\ D \textbf{100}, 123545 (2019) (arXiv:1911.08306)]. In the present model, the generalized second law of thermodynamics is always satisfied, whereas the maximization of entropy is satisfied under specific conditions. The dissipative universe should be constrained by the entropy maximization as if the universe behaves as an ordinary, isolated macroscopic system. The thermodynamic constraints are likely to be consistent with constraints on a transition from a decelerating universe to an accelerating universe.