论文标题

一致性的统一根源

Congruences for generalized Fishburn numbers at roots of unity

论文作者

Goswami, Ankush

论文摘要

最近,人们对$ f(1-q)$和$ \ mathscr {f} _t(1-q)$的系数的算术属性产生了重大兴趣,其中$ f(q)$是kontsevich-zagier奇怪的系列和$ \ $ \ mathscr {f} _t(f} _t(q)奥斯本,拉什沃思,特伦斯加德和周。在本文中,我们证明了两个普通鱼类数量的家族,即$(ζ_n -q)^s f(((ζ_N -q)^r)$和$(ζ_n -q) $ r $,$ s $是某些整数。

There has been significant recent interest in the arithmetic properties of the coefficients of $F(1-q)$ and $\mathscr{F}_t(1-q)$ where $F(q)$ is the Kontsevich-Zagier strange series and $\mathscr{F}_t(q)$ is the strange series associated to a family of torus knots as studied by Bijaoui, Boden, Myers, Osburn, Rushworth, Tronsgard and Zhou. In this paper, we prove prime power congruences for two families of generalized Fishburn numbers, namely, for the coefficients of $(ζ_N - q)^s F((ζ_N - q)^r)$ and $(ζ_N - q)^s \mathscr{F}_t((ζ_N - q)^r)$, where $ζ_N$ is an $N$th root of unity and $r$, $s$ are certain integers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源