论文标题
苔丝揭示了kelt-1b的光相曲线。棕色矮人伴侣的热发射和椭圆形变化,以及恒星的活动
TESS unveils the optical phase curve of KELT-1b. Thermal emission and ellipsoidal variation from the brown dwarf companion, and activity from the star
论文作者
论文摘要
我们介绍了在光波长下对Kelt-1b的相曲线的检测和分析,分析了通过过渡系外行星调查卫星(TESS)获取的数据。 kelt-1b的质量约为27 m_j,是一个低质量的棕色矮人。由于其伴侣的质量高和紧密的距离,宿主恒星具有苔丝光曲线,显示清晰的椭圆形变化。我们用六组分模型对数据进行建模:次要日食,相位曲线对反射光和热发射,多普勒光束,椭圆形变化,恒星活性和主要运输。我们确定苔丝带通道中的二次日食深度为304 +/- 75份量,ppm),这是迄今为止针对Kelt-1b确定的最精确的日食深度。我们测量相曲线的幅度为128 +/- 27 ppm,在最大亮度区域与19.2 +/- 9.6度之间的相应向东偏移,与Spitzer测量很好地吻合。我们分别确定3201 +/- 147 K和1484 +/- 110 K的白天和黑夜亮度温度略高于Spitzer 3.6和4.5千分尺的数据。一维自洽的大气模型可以单独使用热发射而解释苔丝和spitzer日侧的亮度温度,而没有反射光。夜间数据可以通过内部温度约为1100 K的模型来解释,这可能与膨胀的半径有关。苔丝和Spitzer亮度温度之间的差异可以通过Spitzer带中的分子不透明度来解释。在夜间,这种不透明度主要归因于CH4和CO,而在白天则是由于H2-H2和H2-HE碰撞引起的吸收。
We present the detection and analysis of the phase curve of KELT-1b at optical wavelengths, analyzing data taken by the Transiting Exoplanet Survey Satellite (TESS). With a mass of ~27 M_J, KELT-1b is a low-mass brown dwarf. Due to the high mass and close proximity of its companion, the host star has a TESS light curve which shows clear ellipsoidal variations. We model the data with a six-component model: secondary eclipse, phase curve accounting for reflected light and thermal emission, Doppler beaming, ellipsoidal variations, stellar activity and the primary transit. We determine the secondary eclipse depth in the TESS bandpass to be 304 +/- 75 parts-per-million (ppm), the most accurate eclipse depth determined so far for KELT-1b. We measure the amplitude of the phase curve to be 128 +/- 27 ppm, with a corresponding eastward offset between the region of maximum brightness and the substellar point of 19.2 +/- 9.6 degrees, in good agreement with Spitzer measurements. We determine day and night brightness temperatures of 3201 +/- 147 K and 1484 +/- 110 K, respectively, slightly higher than those from Spitzer 3.6 and 4.5 micrometer data. A one-dimensional self-consistent atmospheric model can explain the TESS and Spitzer day side brightness temperatures with thermal emission alone and no reflected light. The night side data can be explained by a model with an internal temperature of ~1100 K, which may be related to the inflated radius. The difference between the TESS and Spitzer brightness temperatures can be explained by stronger molecular opacity in the Spitzer bands. On the night side, this opacity is due primarily to CH4 and CO while on the day side it is due to H2-H2 and H2-He collision-induced absorption.