论文标题
$ c_2 $ raded群体的真实表示:反线理论
Real Representations of $C_2$-Graded Groups: The Antilinear Theory
论文作者
论文摘要
我们使用有限维级代数的结构来开发有限$ C_2 $分类组的反线性表示理论。有限的$ C_2 $分组组是一个有限的组,具有索引2的子组。在该理论中,亚组的作用是线性的,而另一个coset则是反线的。我们介绍了反线块,其结构是该理论的关键组成部分。除其他外,我们研究角色和Frobenius-Schur指标。例如,我们描述了$ c_2 $ graded $ a_n \ leq s_n $的抗线性表示。
We use the structure of finite-dimensional graded algebras to develop the theory of antilinear representations of finite $C_2$-graded groups. A finite $C_2$-graded group is a finite group with a subgroup of index 2. In this theory the subgroup acts linearly, while the other coset acts antilinearly. We introduce antilinear blocks, whose structure is a crucial component of the theory. Among other things, we study characters and Frobenius-Schur indicators. As an example, we describe the antilinear representations of the $C_2$-graded group $A_n \leq S_n$.