论文标题
通过异质数据集进行沟通效率的强大联盟学习
Communication-Efficient Robust Federated Learning Over Heterogeneous Datasets
论文作者
论文摘要
这项工作研究了当数据样本在工人之间不均匀分布时,错误的联合学习,并且中央服务器未知错误的工人数量。在存在可能在战略上损坏数据集的对抗性错误的工人的情况下,交换的本地消息(例如,本地梯度和/或本地模型参数)可能是不可靠的,因此不保证香草随机梯度下降(SGD)算法会得到融合。最近开发的算法通过以减慢融合的价格为有缺陷的工人提供了鲁棒性,从而改善了香草SGD。为了纠正这一限制,目前的工作引入了依赖Nesterov的加速技术的故障抗近端梯度(FRPG)算法。为了减少FRPG的通信开销,还开发了局部(L)FRPG算法,以允许间歇性服务器工作人员参数交换。对于强烈凸出损失函数,FRPG和LFRPG的收敛速率比基准稳健的随机聚集算法更快。此外,在使用相同的通信回合时,LFRPG收敛速度比FRPG更快。在各种实际数据集上进行的数值测试证实了FRPG和LFRPG在强大的随机聚合基准和竞争替代方案上的加速收敛性。
This work investigates fault-resilient federated learning when the data samples are non-uniformly distributed across workers, and the number of faulty workers is unknown to the central server. In the presence of adversarially faulty workers who may strategically corrupt datasets, the local messages exchanged (e.g., local gradients and/or local model parameters) can be unreliable, and thus the vanilla stochastic gradient descent (SGD) algorithm is not guaranteed to converge. Recently developed algorithms improve upon vanilla SGD by providing robustness to faulty workers at the price of slowing down convergence. To remedy this limitation, the present work introduces a fault-resilient proximal gradient (FRPG) algorithm that relies on Nesterov's acceleration technique. To reduce the communication overhead of FRPG, a local (L) FRPG algorithm is also developed to allow for intermittent server-workers parameter exchanges. For strongly convex loss functions, FRPG and LFRPG have provably faster convergence rates than a benchmark robust stochastic aggregation algorithm. Moreover, LFRPG converges faster than FRPG while using the same communication rounds. Numerical tests performed on various real datasets confirm the accelerated convergence of FRPG and LFRPG over the robust stochastic aggregation benchmark and competing alternatives.