论文标题
通过张量分解概括递归神经模型
Generalising Recursive Neural Models by Tensor Decomposition
论文作者
论文摘要
大多数用于结构化数据的机器学习模型通过利用节点邻域中信息的简单聚合函数(在神经模型,通常是加权总和)来编码节点的结构知识。然而,选择简单上下文聚合函数(例如总和)的选择可以广泛最佳。在这项工作中,我们引入了一种通用方法,以模拟利用基于张量的配方的结构环境的聚合。我们展示了如何通过基于塔克张量分解的近似值来控制参数空间大小的指数增长。此近似允许限制参数空间大小,使其与隐藏的编码空间的大小相关。通过这种方式,我们可以有效地调节编码的表达性之间的权衡,该编码受到隐藏大小,计算复杂性和模型概括的控制,受参数化的影响。最后,我们引入了一种新的Tensorial TERERIAL TERIOL TERELSTM作为我们框架实例的实例,并使用它来实验评估我们在树分类方案上的工作假设。
Most machine learning models for structured data encode the structural knowledge of a node by leveraging simple aggregation functions (in neural models, typically a weighted sum) of the information in the node's neighbourhood. Nevertheless, the choice of simple context aggregation functions, such as the sum, can be widely sub-optimal. In this work we introduce a general approach to model aggregation of structural context leveraging a tensor-based formulation. We show how the exponential growth in the size of the parameter space can be controlled through an approximation based on the Tucker tensor decomposition. This approximation allows limiting the parameters space size, decoupling it from its strict relation with the size of the hidden encoding space. By this means, we can effectively regulate the trade-off between expressivity of the encoding, controlled by the hidden size, computational complexity and model generalisation, influenced by parameterisation. Finally, we introduce a new Tensorial Tree-LSTM derived as an instance of our framework and we use it to experimentally assess our working hypotheses on tree classification scenarios.