论文标题
周期性地,准周期性和随机驱动的保形场理论:第一部分
Periodically, Quasi-periodically, and Randomly Driven Conformal Field Theories: Part I
论文作者
论文摘要
在本文及其续集中,我们研究了具有周期性,准周期性和随机驾驶的1+1D共形场理论(CFTS)中的非平衡动力学。我们研究了一个可溶的驱动器家族,其中哈密顿量仅涉及在单个波长下空间调节的能量摩孔密度。然后,由Möbius坐标转换捕获产生的时间演化。在本第I部分中,我们建立了一般框架,并专注于前两个类。在定期驱动的CFT中,我们概括了早期的工作,并研究了不同阶段纠缠/能量演化的通用特征,即加热,非加热阶段及其之间的相变。在准周期驱动的CFT中,我们主要关注斐波那契序列驾驶的情况。我们发现(i)非加热阶段构成了一组圆形尺寸零; (ii)在加热阶段,Lyapunov指数(表征纠缠熵和能量的生长速率)表现出自相似性,并且可以任意小; (iii)加热阶段在斐波那契时代的空间结构位置表现出周期性; (iv)可以准确地找到非加热的固定点,其中纠缠熵/能量在斐波那契数量上振荡,但在非纤维纤维数字上以对数/多种方式生长; (v)对于驾驶汉密尔顿人的某些选择,可以将斐波那契驾驶CFT的非加热阶段映射到在斐波那契准晶体中传播的电子的能谱。此外,还研究了另一个带有aubry-andré序列的准周期驱动的CFT。我们将CFT结果与晶格计算进行了比较,并找到了显着的一致性。
In this paper and its sequel, we study non-equilibrium dynamics in driven 1+1D conformal field theories (CFTs) with periodic, quasi-periodic, and random driving. We study a soluble family of drives in which the Hamiltonian only involves the energy-momentum density spatially modulated at a single wavelength. The resulting time evolution is then captured by a Möbius coordinate transformation. In this Part I, we establish the general framework and focus on the first two classes. In periodically driven CFTs, we generalize earlier work and study the generic features of entanglement/energy evolution in different phases, i.e. the heating, non-heating phases and the phase transition between them. In quasi-periodically driven CFTs, we mainly focus on the case of driving with a Fibonacci sequence. We find that (i) the non-heating phases form a Cantor set of measure zero; (ii) in the heating phase, the Lyapunov exponents (which characterize the growth rate of the entanglement entropy and energy) exhibit self-similarity, and can be arbitrarily small; (iii) the heating phase exhibits periodicity in the location of spatial structures at the Fibonacci times; (iv) one can find exactly the non-heating fixed point, where the entanglement entropy/energy oscillate at the Fibonacci numbers, but grow logarithmically/polynomially at the non-Fibonacci numbers; (v) for certain choices of driving Hamiltonians, the non-heating phases of the Fibonacci driving CFT can be mapped to the energy spectrum of electrons propagating in a Fibonacci quasi-crystal. In addition, another quasi-periodically driven CFT with an Aubry-André like sequence is also studied. We compare the CFT results to lattice calculations and find remarkable agreement.