论文标题
半监督分类的集体竞争扩散网络
Class-Attentive Diffusion Network for Semi-Supervised Classification
论文作者
论文摘要
最近,已广泛研究了用于半监督分类的图形神经网络。但是,现有方法仅使用有限的邻居的信息,并且不处理图中的类间连接。在本文中,我们提出了使用类竞争扩散(ADACAD)的自适应聚集,这是一种新的聚合方案,可以自适应地汇总汇总节点,可能是K-HOP邻居之间同一类的淋巴结。为此,我们首先提出了一种新型的随机过程,称为类别的扩散(CAD),该过程加强了对阶级淋巴结的关注,并减轻了对阶层间节点的关注。与仅由图形结构确定的过渡矩阵的现有扩散方法相反,CAD既考虑节点特征和图形结构,又设计了使用分类器的类别键入过渡矩阵的设计。然后,我们进一步提出了一个自适应更新方案,该方案利用每个节点的扩散结果的不同反射率,具体取决于本地类别 - 封闭式。作为主要优点,Adacad减轻了由节点标签和图形拓扑之间差异引起的不需要的类间特征混合的问题。我们建立在Adacad上,我们构建了一个简单的模型,称为类别 - 集体扩散网络(CAD-NET)。在七个基准数据集上进行的广泛实验始终证明了该方法的功效,而我们的CAD-NET显着超过了最新方法。代码可在https://github.com/ljin0429/cad-net上找到。
Recently, graph neural networks for semi-supervised classification have been widely studied. However, existing methods only use the information of limited neighbors and do not deal with the inter-class connections in graphs. In this paper, we propose Adaptive aggregation with Class-Attentive Diffusion (AdaCAD), a new aggregation scheme that adaptively aggregates nodes probably of the same class among K-hop neighbors. To this end, we first propose a novel stochastic process, called Class-Attentive Diffusion (CAD), that strengthens attention to intra-class nodes and attenuates attention to inter-class nodes. In contrast to the existing diffusion methods with a transition matrix determined solely by the graph structure, CAD considers both the node features and the graph structure with the design of our class-attentive transition matrix that utilizes a classifier. Then, we further propose an adaptive update scheme that leverages different reflection ratios of the diffusion result for each node depending on the local class-context. As the main advantage, AdaCAD alleviates the problem of undesired mixing of inter-class features caused by discrepancies between node labels and the graph topology. Built on AdaCAD, we construct a simple model called Class-Attentive Diffusion Network (CAD-Net). Extensive experiments on seven benchmark datasets consistently demonstrate the efficacy of the proposed method and our CAD-Net significantly outperforms the state-of-the-art methods. Code is available at https://github.com/ljin0429/CAD-Net.