论文标题

逐渐解放感知gan

Progressively Unfreezing Perceptual GAN

论文作者

Sun, Jinxuan, Chen, Yang, Dong, Junyu, Zhong, Guoqiang

论文摘要

生成的对抗网络(GAN)广泛用于图像生成任务,但生成的图像通常缺乏纹理细节。在本文中,我们提出了一个通用框架,称为逐渐脱离感知的gan(pupgan),该框架可以生成带有精细纹理细节的图像。特别是,我们提出了一个具有预训练的感知特征提取器的自适应感知歧视器,该鉴定器可以有效地测量生成图像和真实图像的多级特征之间的差异。此外,我们为自适应感知歧视者提出了一个逐渐脱离的方案,该方案可确保从大规模分类任务到指定的图像生成任务的平滑传输过程。与三个图像生成任务的经典基线相比,定性和定量实验,即单图超分辨率,配对的图像对图像翻译和未配对的图像对图像的翻译表明,幼崽比比较方法的优越性。

Generative adversarial networks (GANs) are widely used in image generation tasks, yet the generated images are usually lack of texture details. In this paper, we propose a general framework, called Progressively Unfreezing Perceptual GAN (PUPGAN), which can generate images with fine texture details. Particularly, we propose an adaptive perceptual discriminator with a pre-trained perceptual feature extractor, which can efficiently measure the discrepancy between multi-level features of the generated and real images. In addition, we propose a progressively unfreezing scheme for the adaptive perceptual discriminator, which ensures a smooth transfer process from a large scale classification task to a specified image generation task. The qualitative and quantitative experiments with comparison to the classical baselines on three image generation tasks, i.e. single image super-resolution, paired image-to-image translation and unpaired image-to-image translation demonstrate the superiority of PUPGAN over the compared approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源