论文标题

具有多个出口的动态系统中的不同时间尺度

Different time scales in dynamic systems with multiple exits

论文作者

Bel, Golan, Zilman, Anton, Kolomeisky, Anatoly B.

论文摘要

随机生物化学和运输过程具有各种最终结果,可以将其视为具有多个出口的动态系统。然而,许多当前的理论研究通常仅考虑每个特定结果的单个时间尺度,有效地对应于单一外观过程,并假定每个退出过程的独立性。但是其他出口的存在会影响在任何特定出口下测得的统计特性和动力学。在这里,我们提出理论参数,以明确显示不同时间尺度的存在,例如平均退出时间和反向出口磁通量,用于具有多个退出的动态过程。这意味着如果不考虑其他出口的存在,就无法考虑任何特定退出动态的统计数据。使用分析计算,平均场估计和动力学蒙特卡洛计算机模拟详细描述了几个说明性示例。讨论了存在不同时间尺度的基本微观机制。结果与理解各种生物,化学和工业过程的机制有关,包括通过渠道和毛孔的运输。

Stochastic biochemical and transport processes have various final outcomes, and they can be viewed as dynamic systems with multiple exits. Many current theoretical studies, however, typically consider only a single time scale for each specific outcome, effectively corresponding to a single-exit process and assuming the independence of each exit process. But the presence of other exits influences the statistical properties and dynamics measured at any specific exit. Here, we present theoretical arguments to explicitly show the existence of different time scales, such as mean exit times and inverse exit fluxes, for dynamic processes with multiple exits. This implies that the statistics of any specific exit dynamics cannot be considered without taking into account the presence of other exits. Several illustrative examples are described in detail using analytical calculations, mean-field estimates, and kinetic Monte Carlo computer simulations. The underlying microscopic mechanisms for the existence of different time scales are discussed. The results are relevant for understanding the mechanisms of various biological, chemical, and industrial processes, including transport through channels and pores.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源