论文标题
$ S_4 $模块化组的模块化不变夸克和Lepton型号
Modular Invariant Quark and Lepton Models in Double Covering of $S_4$ Modular Group
论文作者
论文摘要
我们对同质有限模块化组$γ'_4\ equiv s'_4 $进行全面分析,这是$ s_4 $ group的双重覆盖。级别4的权重1模块化形式是根据Dedekind ETA函数构建的,它们作为$ s'4 $ of $ s'4 $的三胞胎$ \ mathbf {\ hat {3}'} $转换。积分重量模块化形式直到重量6由重量1模块化形式的张量产物构建。 We perform a systematical classification of $S'_4$ modular models for lepton masses and mixing with/without generalized CP, where the left-handed leptons are assigned to triplet of $S'_4$ and right-handed charged leptons transform as singlets under $S'_4$, and we consider both scenarios where the neutrino masses arise from Weinberg operator or type I seesaw mechanism.讨论了轻率质量,混合角度,违反CP阶段和中微子双衰减的最小模型的现象学意义。 $ s'_4 $模块化对称性扩展到夸克部门,我们提出了几种预测模型,这些模型使用九个或十个免费参数,包括$τ$的真实和虚构零件来描述夸克群体和cabibbo-kobayashi-maskawa混合矩阵。我们给出了一个夸克 - 莱普顿统一模型,该模型可以同时解释夸克和瘦素的风味结构,以$τ$的共同值。
We perform a comprehensive analysis of the homogeneous finite modular group $Γ'_4\equiv S'_4$ which is the double covering of $S_4$ group. The weight 1 modular forms of level 4 are constructed in terms of Dedekind eta function, and they transform as a triplet $\mathbf{\hat{3}'}$ of $S'_4$. The integral weight modular forms until weight 6 are built from the tensor products of weight 1 modular forms. We perform a systematical classification of $S'_4$ modular models for lepton masses and mixing with/without generalized CP, where the left-handed leptons are assigned to triplet of $S'_4$ and right-handed charged leptons transform as singlets under $S'_4$, and we consider both scenarios where the neutrino masses arise from Weinberg operator or type I seesaw mechanism. The phenomenological implications of the minimal models for lepton masses, mixing angles, CP violation phases and neutrinoless double decay are discussed. The $S'_4$ modular symmetry is extended to quark sector, we present several predictive models which use nine or ten free parameters including real and imaginary parts of $τ$ to describe quark masses and Cabibbo-Kobayashi-Maskawa mixing matrix. We give a quark-lepton unified model which can explain the flavor structure of quarks and leptons simultaneously for a common value of $τ$.