论文标题

带有时间噪声的量化浮光拓扑

Quantized Floquet topology with temporal noise

论文作者

Timms, Christopher I., Sieberer, Lukas M., Kolodrubetz, Michael H.

论文摘要

时间周期性(FLOQUET)驱动器是一种设计物质量子阶段的强大方法,包括从根本上是非平衡状态,这些状态在静态的哈密顿系统中是不可能的。一个特征的例子是异常的浮雕绝缘子,它表现出与Chern绝缘子相似的拓扑量化的手性边缘状态,但可以适合批量定位。我们研究了该拓扑系统对时间依赖性噪声的响应,这打破了拓扑上保护浮光对称性的响应。令人惊讶的是,我们发现,通过部分填充费米子系统和测量每个周期泵送的电荷给出的量化响应仍然量化为有限的噪声幅度。我们将这种坚固的拓扑结构追踪到边缘状态衰减的扩散与保利的相互作用,我们期望这应该与相互作用相互作用。我们通过水平统计数据来确定具有空间障碍的系统的拓扑阶段的边界,并通过分析浮力超级操作方法来证实我们的结果,以消失障碍的极限。这种方法表明将系统状态解释为非热浮拓扑阶段。我们在没有浮雕对称性和潜在的实验实现的情况下对其他拓扑响应的量化进行评论。

Time-periodic (Floquet) drive is a powerful method to engineer quantum phases of matter, including fundamentally non-equilibrium states that are impossible in static Hamiltonian systems. One characteristic example is the anomalous Floquet insulator, which exhibits topologically quantized chiral edge states similar to a Chern insulator, yet is amenable to bulk localization. We study the response of this topological system to time-dependent noise, which breaks the topologically protecting Floquet symmetry. Surprisingly, we find that the quantized response, given by partially filling the fermionic system and measuring charge pumped per cycle, remains quantized up to finite noise amplitude. We trace this robust topology to an interplay between diffusion and Pauli blocking of edge state decay, which we expect should be robust against interactions. We determine the boundaries of the topological phase for a system with spatial disorder numerically through level statistics, and corroborate our results in the limit of vanishing disorder through an analytical Floquet superoperator approach. This approach suggests an interpretation of the state of the system as a non-Hermitian Floquet topological phase. We comment on quantization of other topological responses in the absence of Floquet symmetry and potential experimental realizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源