论文标题

短距离电位的热电离

Thermal Ionization for Short-Range Potentials

论文作者

Hasler, David, Siebert, Oliver

论文摘要

我们以schrödinger操作员的形式研究了一个限制粒子的混凝土模型,其在正温度下以紧凑的平滑电势与玻色粒场耦合。我们表明,如果耦合足够小,该模型在任何正温度上都表现出热电离。从数学上讲,必须排除零是时间演变的自我伴侣发生器的特征值 - liouvillian。这将通过在散射功能的空间中使用阳性换向器方法来完成。我们的证明依赖于耦合中的空间截止,但否则不需要任何不自然的限制。

We study a concrete model of a confined particle in form of a Schrödinger operator with a compactly supported smooth potential coupled to a bosonic field at positive temperature. We show, that the model exhibits thermal ionization for any positive temperature, provided the coupling is sufficiently small. Mathematically, one has to rule out that zero is an eigenvalue of the self-adjoint generator of time evolution - the Liouvillian. This will be done by using positive commutator methods with dilations in the space of scattering functions. Our proof relies on a spatial cutoff in the coupling but does otherwise not require any unnatural restrictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源