论文标题
通过非排水晶粒表面和冰形化学形成复杂的有机分子在冷星际环境中的形成
Formation of Complex Organic Molecules in Cold Interstellar Environments through non-diffusive grain-surface and ice-mantle chemistry
论文作者
论文摘要
复杂有机分子(COM)的星座产生的盛行理论涉及在温暖的尘土表面上形成,这是通过通过稳定分子的晶表面光解离产生的自由基的扩散和反应。但是,现在在非常低的温度下观察到了某些气相O型Coms,特别是乙醛(Ch $ _3 $ CHO),甲基甲酸盐(Ch $ _3 $ OCHO)和Dimethyl Ether(Ch $ _3 $ _3 $ _3 $ _3 $ _3 $),在非常低的温度下,挑战了温暖的情况。在这里,我们将新的非扩散机制的选择介绍到一个天体化学模型中,以说明标准扩散图片的故障,并在星际晶粒上提供更广泛的COM形成场景。为:(i)从另一个反应物发生的反应形成自由基的情况下,提供了新的通用速率公式,从而产生立即的后续反应; (ii)自由基以激发态形成,使它们能够克服激活屏障与附近稳定分子反应; (iii)自由基是通过接近反应伴侣的照片解散形成的,然后立即进行反应。每个过程都没有大自由基的扩散。新机制显着增强了冷的丰度,成功地重现了Prestellar Core L1544的关键观察结果。从晶曲面COM中进行的H-反应,然后重组,在将化学解吸到气相中起着至关重要的作用。紫外线诱导的化学物质在散装冰中产生了大量的丰度,这些冰是保留在谷物上,可能会持续到以后的阶段。 o $ _2 $在披风中也强烈形成,尽管光解会表明Cometary o $ _2 $的确可能是星际。
A prevailing theory for the interstellar production of complex organic molecules (COMs) involves formation on warm dust-grain surfaces, via the diffusion and reaction of radicals produced through grain-surface photodissociation of stable molecules. However, some gas-phase O-bearing COMs, notably acetaldehyde(CH$_3$CHO), methyl formate(CH$_3$OCHO), and dimethyl ether(CH$_3$OCH$_3$), are now observed at very low temperatures, challenging the warm scenario. Here, we introduce a selection of new non-diffusive mechanisms into an astrochemical model, to account for the failure of the standard diffusive picture and to provide a more generalized scenario of COM formation on interstellar grains. New generic rate formulations are provided for cases where: (i) radicals are formed by reactions occurring close to another reactant, producing an immediate follow-on reaction; (ii) radicals are formed in an excited state, allowing them to overcome activation barriers to react with nearby stable molecules; (iii) radicals are formed through photo-dissociation close to a reaction partner, followed by immediate reaction. Each process occurs without the diffusion of large radicals. The new mechanisms significantly enhance cold COM abundances, successfully reproducing key observational results for prestellar core L1544. H-abstraction from grain-surface COMs, followed by recombination, plays a crucial role in amplifying chemical desorption into the gas phase. The UV-induced chemistry produces significant COM abundances in the bulk ices, which are retained on the grains and may persist to later stages. O$_2$ is also formed strongly in the mantle though photolysis, suggesting cometary O$_2$ could indeed be interstellar.