论文标题
深度学习增强了亚波长粒子的全息表征
Holographic characterisation of subwavelength particles enhanced by deep learning
论文作者
论文摘要
纳米颗粒在其天然环境中的物理特性的表征在广泛的领域中起着核心作用,从纳米颗粒增强药物递送到环境纳米污染评估。标准的光学方法需要长长的纳米颗粒轨迹,这些纳米颗粒分散在具有已知粘度的介质中,以表征其扩散常数,从而表征其大小。但是,通常只有短轨迹可用,而中粘度未知,例如在大多数生物医学应用中。在这项工作中,我们展示了一种无标记的方法,该方法使用两个较小的轨迹量化了单个亚波长颗粒的大小和折射率,而不是标准方法所要求的,并且没有关于培养基的物理化学特性的假设。我们通过开发加权平均卷积神经网络来分析颗粒的全息图像来实现这一目标。作为原理的证明,我们在没有先验的溶质粘度或折射率的情况下区分和量化了二氧化硅和聚苯乙烯颗粒的大小和折射率。作为超出技术状态的应用程序的一个示例,我们演示了该技术如何监测聚苯乙烯纳米颗粒的聚集,从而揭示了单体数量的时间分辨动力学和单个亚波长聚集体的分形维度。该技术为纳米颗粒表征开辟了新的可能性,并通过从生物医学到环境监测的广泛应用。
The characterisation of the physical properties of nanoparticles in their native environment plays a central role in a wide range of fields, from nanoparticle-enhanced drug delivery to environmental nanopollution assessment. Standard optical approaches require long trajectories of nanoparticles dispersed in a medium with known viscosity to characterise their diffusion constant and, thus, their size. However, often only short trajectories are available, while the medium viscosity is unknown, e.g., in most biomedical applications. In this work, we demonstrate a label-free method to quantify size and refractive index of individual subwavelength particles using two orders of magnitude shorter trajectories than required by standard methods, and without assumptions about the physicochemical properties of the medium. We achieve this by developing a weighted average convolutional neural network to analyse the holographic images of the particles. As a proof of principle, we distinguish and quantify size and refractive index of silica and polystyrene particles without prior knowledge of solute viscosity or refractive index. As an example of an application beyond the state of the art, we demonstrate how this technique can monitor the aggregation of polystyrene nanoparticles, revealing the time-resolved dynamics of the monomer number and fractal dimension of individual subwavelength aggregates. This technique opens new possibilities for nanoparticle characterisation with a broad range of applications from biomedicine to environmental monitoring.