论文标题

串联注意神经网络用于图像恢复

Concatenated Attention Neural Network for Image Restoration

论文作者

YingJie, Tian, YiQi, Wang, LinRui, Yang, ZhiQuan, Qi

论文摘要

在本文中,我们为低级视觉任务提供了一个通用框架,包括减少图像压缩工件和图像降低。在此框架下,一种新颖的串联注意神经网络(CANET)是专门设计用于图像恢复的。本文的主要贡献如下:首先,通过应用简洁但有效的串联和特征选择机制,我们建立了一种新型的连接机制,该机制在模块堆叠网络中连接不同的模块。其次,在每个模块卷积层中都使用像素和渠道注意机制,这可以进一步提取图像中更多基本信息。最后,我们证明,通过在压缩伪像删除和图像降解方面进行了足够的实验,CANET比以前的最先进方法取得了更好的结果。

In this paper, we present a general framework for low-level vision tasks including image compression artifacts reduction and image denoising. Under this framework, a novel concatenated attention neural network (CANet) is specifically designed for image restoration. The main contributions of this paper are as follows: First, by applying concise but effective concatenation and feature selection mechanism, we establish a novel connection mechanism which connect different modules in the modules stacking network. Second, both pixel-wise and channel-wise attention mechanisms are used in each module convolution layer, which promotes further extraction of more essential information in images. Lastly, we demonstrate that CANet achieves better results than previous state-of-the-art approaches with sufficient experiments in compression artifacts removing and image denoising.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源