论文标题

用于功率图和广义Ramanujan图的Alon-Boppana定理

An Alon-Boppana theorem for powered graphs and generalized Ramanujan graphs

论文作者

Abbe, Emmanuel, Ralli, Peter

论文摘要

图的第r-th幂通过连接距离r中的每个顶点对来修改图形。本文对图形的第三幂(包括不规则图)进行了Alon-Boppana定理的概括。这导致了Ramanujan图的广义概念,该图的频谱差距与派生的Alon-Boppana结合匹配。特别是,我们表明某些由于局部不规则性而不是良好扩展器的图形,例如erdos-renyi随机图,几乎曾经启动过ramanujan。 Ramanujan图的不同概括也可以从非背带操作员获得。接下来,我们认为,动力操作员给出了比后者更强大的概念:稀疏的erdos-renyi随机图和对手修改log(n)^c $ pertices的子图几乎仍然是ramanujan的,但在非背后的意义上并不是Ramanujan。作为应用程序,这为不同的块模型提供了强大的社区测试。

The r-th power of a graph modifies a graph by connecting every vertex pair within distance r. This paper gives a generalization of the Alon-Boppana Theorem for the r-th power of graphs, including irregular graphs. This leads to a generalized notion of Ramanujan graphs, those for which the powered graph has a spectral gap matching the derived Alon-Boppana bound. In particular, we show that certain graphs that are not good expanders due to local irregularities, such as Erdos-Renyi random graphs, become almost Ramanujan once powered. A different generalization of Ramanujan graphs can also be obtained from the nonbacktracking operator. We next argue that the powering operator gives a more robust notion than the latter: Sparse Erdos-Renyi random graphs with an adversary modifying a subgraph of log(n)^c$ vertices are still almost Ramanujan in the powered sense, but not in the nonbacktracking sense. As an application, this gives robust community testing for different block models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源