论文标题

基于深度学习的单个样本面部识别:一项调查

Deep Learning Based Single Sample Per Person Face Recognition: A Survey

论文作者

Liu, Fan, Chen, Delong, Wang, Fei, Li, Zewen, Xu, Feng

论文摘要

长期以来,面部识别一直是人工智能领域的一个积极研究领域,尤其是自近年来深度学习的兴起以来。在某些实际情况下,每个身份只有一个可以培训的样本。在这种情况下的面部识别被称为单个样本识别,并对深层模型的有效培训构成了重大挑战。因此,近年来,研究人员试图在单个样本情况下释放更多的深度学习潜力,并提高模型识别性能。尽管已经对传统的单个样本面部识别方法进行了几项全面的调查,但新兴的基于深度学习的方法很少参与这些评论。因此,我们专注于本文中基于深度学习的方法,将它们分类为虚拟样本方法和通用学习方法。在前一种类别中,生成虚拟图像或虚拟特征以使深层模型的训练受益。在后者中,使用了其他多样本通用集。通用学习方法有三种类型:结合传统方法和深度特征,改善损失功能并改善网络结构,所有这些都涵盖了我们的分析。此外,我们回顾了通常用于评估单个样本面部识别模型的面部数据集,并继续比较不同类型的模型的结果。此外,我们讨论了现有的单个样本面部识别方法的问题,包括虚拟样本方法中的身份信息保存,通用学习方法中的域适应性。此外,我们认为开发无监督的方法是一个有希望的未来方向,并指出语义差距是需要进一步考虑的重要问题。

Face recognition has long been an active research area in the field of artificial intelligence, particularly since the rise of deep learning in recent years. In some practical situations, each identity has only a single sample available for training. Face recognition under this situation is referred to as single sample face recognition and poses significant challenges to the effective training of deep models. Therefore, in recent years, researchers have attempted to unleash more potential of deep learning and improve the model recognition performance in the single sample situation. While several comprehensive surveys have been conducted on traditional single sample face recognition approaches, emerging deep learning based methods are rarely involved in these reviews. Accordingly, we focus on the deep learning-based methods in this paper, classifying them into virtual sample methods and generic learning methods. In the former category, virtual images or virtual features are generated to benefit the training of the deep model. In the latter one, additional multi-sample generic sets are used. There are three types of generic learning methods: combining traditional methods and deep features, improving the loss function, and improving network structure, all of which are covered in our analysis. Moreover, we review face datasets that have been commonly used for evaluating single sample face recognition models and go on to compare the results of different types of models. Additionally, we discuss problems with existing single sample face recognition methods, including identity information preservation in virtual sample methods, domain adaption in generic learning methods. Furthermore, we regard developing unsupervised methods is a promising future direction, and point out that the semantic gap as an important issue that needs to be further considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源