论文标题

点产品链

Dot product chains

论文作者

Kilmer, Shelby, Marshall, Caleb, Senger, Steven

论文摘要

我们研究了ERD \ H OS'单位距离问题的变体,涉及从大量有限点集选择的连续对点之间的点产物。具体而言,给定一组有限的$ n $点$ e $,以及一系列非零点产品$(α_1,\ ldots,α_k)$,我们在最大可能的分组$(a_1,\ dots)的最大数量(a_1,\ dots)上给出上限和下限A_ {J+1} =α_J$每$ 1 \ leq J \ leq k $。

We study a variant of Erd\H os' unit distance problem, concerning dot products between successive pairs of points chosen from a large finite point set. Specifically, given a large finite set of $n$ points $E$, and a sequence of nonzero dot products $(α_1,\ldots,α_k)$, we give upper and lower bounds on the maximum possible number of tuples of distinct points $(A_1,\dots, A_{k+1})\in E^{k+1}$ satisfying $A_j \cdot A_{j+1}=α_j$ for every $1\leq j \leq k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源