论文标题
新颖的双重关系和鹰页相变的恒定
Novel dual relation and constant in Hawking-Page phase transitions
论文作者
论文摘要
普遍关系和常数在理解物理理论方面具有重要的应用。在本文中,我们探讨了Schwarzschild Anti-De保姆黑洞中霍金页相位过渡的问题。我们发现($ d $+1)的最低温度在$ d $尺寸(让人联想到全息原理)之间,我们发现了($ d $+1)的最低温度与霍金 - 尺寸的黑洞($ D $+1)之间的最低双重关系。此外,我们发现归一化的ruppeiner标量曲率是鹰式页面过渡点的通用常数。由于Ruppeiner曲率可以视为黑洞微结构之间相互作用强度的指标,因此我们猜想这个通用常数表示相互作用阈值,在此之后,虚拟黑洞变成了真实的孔。这种新的双重关系和通用常数对于理解霍金 - 页面过渡至关重要,并且在不久的将来可能在黑洞物理学中具有新的重要应用。
Universal relations and constants have important applications in understanding a physical theory. In this article, we explore this issue for Hawking-Page phase transitions in Schwarzschild anti-de Sitter black holes. We find a novel exact dual relation between the minimum temperature of the ($d$+1)-dimensional black hole and the Hawking-Page phase transition temperature in $d$ dimensions, reminiscent of the holographic principle. Furthermore, we find that the normalized Ruppeiner scalar curvature is a universal constant at the Hawking-Page transition point. Since the Ruppeiner curvature can be treated as an indicator of the intensity of the interactions amongst black hole microstructures, we conjecture that this universal constant denotes an interaction threshold, beyond which a virtual black hole becomes a real one. This new dual relation and universal constant are fundamental in understanding Hawking-Page phase transitions, and might have new important applications in the black hole physics in the near future.