论文标题
可压缩流的两流体离散玻尔兹曼模型:基于椭圆形的统计Bhatnagar-grook
Two-fluid discrete Boltzmann model for compressible flows: based on Ellipsoidal Statistical Bhatnagar-Gross-Krook
论文作者
论文摘要
提出了一种基于椭圆形统计Bhatnagar-krook(ES-BGK)的可压缩流的两流体离散玻尔兹曼模型(DBM)。该模型具有灵活的PRANDTL数量或特定的热比。从数学上讲,该模型由两个耦合离散玻尔兹曼方程(DBE)组成。每个DBE描述流体的一个组成部分。从物理上讲,该模型等同于基于Navier-Stokes(NS)方程的宏观流体模型,并补充了用于热力学非平衡行为的粗粒模型。为了获得灵活的prandtl数,在椭圆形统计分布函数中引入了系数以控制粘度。为了获得灵活的比热比,在能量动力矩中引入了一个参数,以控制额外的自由度。对于二元混合物,宏观流体模型与DBM之间的对应关系可能是几个。使用五个典型的基准测试来验证和验证模型。提出了一些有趣的非平衡结果,这些结果在NS模型或单流体DBM中不可用。
A two-fluid Discrete Boltzmann Model(DBM) for compressible flows based on Ellipsoidal Statistical Bhatnagar-Gross-Krook(ES-BGK) is presented. The model has flexible Prandtl number or specific heat ratio. Mathematically, the model is composed of two coupled Discrete Boltzmann Equations(DBE). Each DBE describes one component of the fluid. Physically, the model is equivalent to a macroscopic fluid model based on Navier-Stokes(NS) equations, and supplemented by a coarse-grained model for thermodynamic non-equilibrium behaviors. To obtain a flexible Prandtl number, a coefficient is introduced in the ellipsoidal statistical distribution function to control the viscosity. To obtain a flexible specific heat ratio, a parameter is introduced in the energy kinetic moments to control the extra degree of freedom. For binary mixture, the correspondence between the macroscopic fluid model and the DBM may be several-to-one. Five typical benchmark tests are used to verify and validate the model. Some interesting non-equilibrium results, which are not available in the NS model or the single-fluid DBM, are presented.