论文标题
具有异质治疗效果的学习和测试子组:两项研究的序列
Learning and Testing Sub-groups with Heterogeneous Treatment Effects:A Sequence of Two Studies
论文作者
论文摘要
估计干预措施的治疗幅度如何在关注人群的亚组中有所不同。在我们的论文中,我们提出了一种首先提出的两研究方法,然后测试异质治疗效果。在研究1中,我们使用大型观察数据集学习具有最独特的治疗结果关系(“高/低影响亚组”)的子组。我们采用一种基于模型的递归分区方法来提出高/低冲击子组,并使用样品分解来验证它们。尽管第一个研究排除了噪声,但我们估计的异质治疗效果可能存在潜在的偏见。研究2使用实验设计,在这里,我们根据研究1中学到的子组对样本单位进行了分类。然后,我们在每个组中估算治疗效应,从而测试研究1中提出的因果假设。使用NBER MarketScan数据库中的患者索赔数据,我们将我们的方法应用于医疗保险范围内的较高率高的状态,将方法应用于估计我们的差异效果,以估算出较高的健康状况的差异。我们将方法扩展到研究1中的非参数学习子组。我们还将方法的性能与文献中的其他最新方法进行了比较,该方法仅使用研究2数据。
There is strong interest in estimating how the magnitude of treatment effects of an intervention vary across sub-groups of the population of interest. In our paper, we propose a two-study approach to first propose and then test heterogeneous treatment effects. In Study 1, we use a large observational dataset to learn sub-groups with the most distinctive treatment-outcome relationships ('high/low-impact sub-groups'). We adopt a model-based recursive partitioning approach to propose the high/low impact sub-groups, and validate them by using sample-splitting. While the first study rules out noise, there is potential bias in our estimated heterogeneous treatment effects. Study 2 uses an experimental design, and here we classify our sample units based on sub-groups learned in Study 1. We then estimate treatment effects within each of the groups, thereby testing the causal hypotheses proposed in Study 1. Using patient claims data from the NBER MarketScan database, we apply our approach to estimate heterogeneous effects of a switch to a high-deductible health insurance plan on use of outpatient care by patients with a common chronic condition. We extend the method to non-parametrically learn the sub-groups in Study 1. We also compare the methods' performance to other state-of-the-art methods in the literature that make use only of the Study 2 data.