论文标题

使用多色图Laplacian正则化的Fisheye摄像机图像的联合演示 /纠正

Joint Demosaicking / Rectification of Fisheye Camera Images using Multi-color Graph Laplacian Regularization

论文作者

Lan, Fengbo, Yang, Cheng, Cheung, Gene, Tan, Jack Z. G.

论文摘要

为了从带有多个鱼眼摄像机的钻机中构成360张图像,首先在每个Fisheye摄像机的拜耳(Bayer)拜耳图案网格上进行了演示的处理管道,然后将摄像机网格的演示像素转换为校正的图像网格---因此执行了两个图像插入步骤。因此,插值误差可能会累积,而被捕获的像素中的采集噪声可以在两个连续的处理阶段污染邻居。在本文中,我们提出了一个联合处理框架,该框架同时执行了演示和网格对网格映射 - 因此将噪声污染限制为一个插值。具体而言,我们首先从整流图像中的常规网格位置获得反向映射函数,并在相机的拜耳图片图像中的不规则离网位置。对于整个网格中的每对相邻像素,我们使用这对相邻的像素梯度在拜耳(Bayer Powsned Grid)中估算其梯度。我们基于估计的梯度构建相似性图,并通过图拉普拉斯正则化(GLR)直接在整流网格中插值像素。实验表明,我们的联合方法的表现优于几种竞争的本地方法,这些方法按顺序执行示例性和整流,在PSNR中最高为0.52 dB,在公开可用的数据集中,SSIM在SSIM中最高为0.52 dB,在pSNR中最多可在PSNR中使用5.53db,在室内构造的数据集中的SSSIM中最多为0.411。

To compose a 360 image from a rig with multiple fisheye cameras, a conventional processing pipeline first performs demosaicking on each fisheye camera's Bayer-patterned grid, then translates demosaicked pixels from the camera grid to a rectified image grid---thus performing two image interpolation steps in sequence. Hence interpolation errors can accumulate, and acquisition noise in the captured pixels can pollute neighbors in two consecutive processing stages. In this paper, we propose a joint processing framework that performs demosaicking and grid-to-grid mapping simultaneously---thus limiting noise pollution to one interpolation. Specifically, we first obtain a reverse mapping function from a regular on-grid location in the rectified image to an irregular off-grid location in the camera's Bayer-patterned image. For each pair of adjacent pixels in the rectified grid, we estimate its gradient using the pair's neighboring pixel gradients in three colors in the Bayer-patterned grid. We construct a similarity graph based on the estimated gradients, and interpolate pixels in the rectified grid directly via graph Laplacian regularization (GLR). Experiments show that our joint method outperforms several competing local methods that execute demosaicking and rectification in sequence, by up to 0.52 dB in PSNR and 0.086 in SSIM on the publicly available dataset, and by up to 5.53dB in PSNR and 0.411 in SSIM on the in-house constructed dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源