论文标题

用于弹性表面匹配,比较和插值的数值框架

A numerical framework for elastic surface matching, comparison, and interpolation

论文作者

Bauer, Martin, Charon, Nicolas, Harms, Philipp, Hsieh, Hsi-Wei

论文摘要

表面比较和匹配是计算机视觉中的一个具有挑战性的问题。虽然对不变的Sobolev指标可通过测量边界值问题提供有意义的弹性距离和点对应关系,但在数值上解决此问题往往很困难。平方根正常场(SRNF)大大简化了参数化表面之间某些弹性距离的计算。然而,他们打开了寻找最佳修复化的问题,从而诱导未参数化表面之间的弹性距离。近年来,这个问题集中了很多努力,并导致了几个数字框架的发展。在本文中,我们采用另一种方法,该方法绕过了重新构度的直接估计:我们使用辅助参数化盲型varifold Fidelity度量放大了测地界边界约束。这种重新制定有一些显着的好处。通过完全避免需要进行修复,它提供了处理任意拓扑和采样模式的简单网格的灵活性。此外,该问题将自己带入了粗到精细的多分辨率实现,这使得算法可扩展到大型网格。此外,此方法很容易扩展到高阶特征图,例如平方根曲率字段,并且还能够在匹配问题中包括表面纹理。我们在合成和真实的几个示例中证明了这些优势。

Surface comparison and matching is a challenging problem in computer vision. While reparametrization-invariant Sobolev metrics provide meaningful elastic distances and point correspondences via the geodesic boundary value problem, solving this problem numerically tends to be difficult. Square root normal fields (SRNF) considerably simplify the computation of certain elastic distances between parametrized surfaces. Yet they leave open the issue of finding optimal reparametrizations, which induce elastic distances between unparametrized surfaces. This issue has concentrated much effort in recent years and led to the development of several numerical frameworks. In this paper, we take an alternative approach which bypasses the direct estimation of reparametrizations: we relax the geodesic boundary constraint using an auxiliary parametrization-blind varifold fidelity metric. This reformulation has several notable benefits. By avoiding altogether the need for reparametrizations, it provides the flexibility to deal with simplicial meshes of arbitrary topologies and sampling patterns. Moreover, the problem lends itself to a coarse-to-fine multi-resolution implementation, which makes the algorithm scalable to large meshes. Furthermore, this approach extends readily to higher-order feature maps such as square root curvature fields and is also able to include surface textures in the matching problem. We demonstrate these advantages on several examples, synthetic and real.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源