论文标题

立方体表面的轨道和轨道闭合遏制

Orbit and Orbit Closure Containments for Cubic Surfaces

论文作者

Sukarto, Eunice

论文摘要

鉴于一个矢量空间的两个要素由还原群体作用,我们问它们是否位于同一轨道,如果没有,则一个是否在于另一个轨道。我们开发了优化轨道和轨道闭合算法的技术,并将其应用它们以对轨道闭合封存的部分分类,而无限多种单数点的立方体表面,已知掉落成13种正常形式。我们还讨论了完成此分类的计算障碍,并讨论了朝这个方向上的未来工作的工具。

Given two elements of a vector space acted on by a reductive group, we ask whether they lie in the same orbit, and if not, whether one lies in the orbit closure of the other. We develop techniques to optimize the orbit and orbit closure algorithms and apply these to give a partial classification of orbit closure containments in the case of cubic surfaces with infinitely many singular points, which are known to fall into 13 normal forms. We also discuss the computational obstructions to completing this classification, and discuss tools for future work in this direction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源