论文标题

关于函数的晶状体及其同构定理

On functor-quotients and their isomorphism theorems

论文作者

Barrett, Jordan Mitchell, Vito, Valentino

论文摘要

可以将分类商的概念推广,因为其标准分类概念不会在某些类别中恢复预期的商。我们以$ \ mathcal {f} $的形式提出了一个更通用的公式,类别$ \ mathbf {c} $中的商相关地与忠实的函数$ \ Mathcal {f} \ colon \ colon \ colon \ Mathbf {c} \ to \ to \ to \ mathbf {d d} $。通用代数的同构定理将其推广到此设置,我们还找到了一阶结构的具体类别中的$ \ Mathcal {f} $之间的重要链接,以及为模型理论等价类定义的商类别。通过在此分类环境中首先工作,可以自然获得一些与一阶结构的商相关结果。特别是,我们能够直接从模型理论的上下文中证明某些同构定理,直接从其相应的分类同构定理中证明了一些同构定理。

The notion of a categorical quotient can be generalized since its standard categorical concept does not recover the expected quotients in certain categories. We present a more general formulation in the form of $\mathcal{F}$-quotients in a category $\mathbf{C}$, which are relativized to a faithful functor $\mathcal{F}\colon \mathbf{C} \to \mathbf{D}$. The isomorphism theorems of universal algebras generalize to this setting, and we additionally find important links between $\mathcal{F}$-quotients in the concrete category of first-order structures, and quotients defined for model-theoretic equivalence classes. By first working in this categorical setting, some quotient-related results for first-order structures can be naturally obtained. In particular, we are able to prove some isomorphism theorems in the context of model theory directly from their corresponding categorical isomorphism theorems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源