论文标题

关于伯恩斯坦估计量在单纯形上的边界特性

On the boundary properties of Bernstein estimators on the simplex

论文作者

Ouimet, Frédéric

论文摘要

在本文中,我们研究了伯恩斯坦估计量的渐近特性(偏差,方差,平方误差),用于累积分布函数和密度函数,附近和密度函数在$ d $ d $ dimemensional单纯的边界上。我们的结果概括了LeBlanc(2012)发现的那些,后者对案件进行了$ d = 1 $的处理,并补充了单纯形内部的Ouimet(2021)的结果。由于$ d $维单纯胶的“边缘”的尺寸从$ 0 $(顶点)到$ d-1 $(1 $)的尺寸,我们的内核功能是多项式的,因此,偏见,差异和平方误差的渐近表达并非直接范围,因为它们几乎可以估计,因此,这些产品的估计是,这些产品的概述是对产品的估计,而这些产品的概述是构成产品的范围。伯恩斯坦估计器或不对称内核估计器。这一点使数学分析更加有趣。

In this paper, we study the asymptotic properties (bias, variance, mean squared error) of Bernstein estimators for cumulative distribution functions and density functions near and on the boundary of the $d$-dimensional simplex. Our results generalize those found by Leblanc (2012), who treated the case $d=1$, and complement the results from Ouimet (2021) in the interior of the simplex. Since the "edges" of the $d$-dimensional simplex have dimensions going from $0$ (vertices) up to $d - 1$ (facets) and our kernel function is multinomial, the asymptotic expressions for the bias, variance and mean squared error are not straightforward extensions of one-dimensional asymptotics as they would be for product-type estimators studied by almost all past authors in the context of Bernstein estimators or asymmetric kernel estimators. This point makes the mathematical analysis much more interesting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源